Bibliography
Abelson, Harold. 1996. Structure and Interpretation of Computer Programs, Second Edition. MIT Press.
Aho, Alfred V, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2015. Compilers: Principles, Techniques, & Tools. Pearson.
Bright, Paige, Alan Edelman, and Steven G Johnson. 2025. “Matrix Calculus (for Machine Learning and Beyond).” ArXiv.org. 2025. https://arxiv.org/abs/2501.14787.
Cho, Kyunghyun. 2025. “Machine Learning: A Lecture Note.” ArXiv.org. 2025. https://arxiv.org/abs/2505.03861.
Cooper, Keith D, and Linda Torczon. 2022. Engineering a Compiler. Morgan Kaufmann.
Cormen, Thomas H, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to Algorithms. MIT Press.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge, Massachusetts: The MIT Press. https://www.deeplearningbook.org/.
Hack, Sebastian. 2007. Register Allocation for Programs in SSA Form.
Harris, Sarah. 2021. Digital Design and Computer Architecture: RISC-V Edition. S.L.: Morgan Kaufmann Publisher.
Hennessy, John L, and David A Patterson. 2019. Computer Architecture: A Quantitative Approach. Cambridge, Ma: Morgan Kaufmann.
Hwu, Wen-Mei W, David B. Kirk, and Izzat El Hajj. 2022. Programming Massively Parallel Processors: A Hands-on Approach. S.L.: Morgan Kaufmann.
Jurafsky, Dan , and James H. Martin. 2025. “Speech and Language Processing.” Stanford.edu. 2025. https://web.stanford.edu/~jurafsky/slp3/.
Kang, Wanmo, and Kyunghyun Cho. 2025. “Linear Algebra for Data Science.” 2025. https://drive.google.com/file/d/1rQKTjknuHE3HC_9Gyovn4DYZLFe7nBQZ/view.
Klein, Philip N. 2013. Coding the Matrix : Linear Algebra through Applications to Computer Science. Newton, Mass.: Newtonian Press.
Krishnamurthi, Shriram. 2025. “Programming Languages: Application and Interpretation.” Plai. 2025. https://www.plai.org/.
Mackay, David J C. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge: Cambridge University Press.
Møller, Anders, and Michael I Schwartzbach. 2024. “Static Program Analysis.” Cs.au.dk. 2024. https://cs.au.dk/~amoeller/spa/.
Murphy, Kevin P. 2023. Probabilistic Machine Learning: Advanced Concepts. MIT Press.
Murphy, Kevin P. 2022. Probabilistic Machine Learning: An Introduction. Cambridge: MIT Press.
Ng, Andrew, and Tengyu Ma. 2023. “CS229 Lecture Notes.” https://cs229.stanford.edu/main_notes.pdf.
Patt, Yale N, and Sanjay J Patel. 2020. Introduction to Computing Systems : From Bits and Gates to C/C++ & Beyond. New York, Ny: Mcgraw-Hill.
Rastello, Fabrice, and Florent Bouchez Tichadou. 2022. SSA-Based Compiler Design. Springer Nature.
Scardapane, Simone. 2025. “Alice’s Adventures in a Differentiable Wonderland.” ArXiv.org. 2025. https://arxiv.org/abs/2404.17625v3.
Stepanov, Alexander, and Paul McJones. 2019. Elements of Programming. Semigroup Press.
Tarjan, Robert E. 1988. Data Structures and Network Algorithms. Philadelphia: Society For Industrial And Applied Mathematics.
Trefethen, Lloyd N, and David Bau. 1997. Numerical Linear Algebra. SIAM.